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We consider the effects of strong critical-layer nonlinearity on the spatial evolution 
of an initially linear ‘acoustic mode’ instability wave on a hypersonic flat-plate 
boundary layer. Our analysis shows that nonlinearity, which is initially confined to 
a thin critical layer, first becomes important when the amplitude of the pressure 
fluctuations becomes O(i/M41nM2), where M is the free-stream Mach number. The 
flow outside the critical layer is still determined by linear dynamics and therefore 
takes the form of a linear instability wave - but with its amplitude completely 
determined by the flow within the critical layer. The latter flow is determined by a 
coupled set of nonlinear equations, which we had to solve numerically. 

1. Introduction 
Laminar boundary-layer instabilities are predominantly inviscid a t  sufficiently 

high Mach numbers with the so-called vorticity modes exhibiting the most rapid 
growth a t  very large Mach numbers (Mack 1984, 1987). The so-called acoustic modes 
exhibit the most rapid growth a t  more moderate Mach numbers - with the two- 
dimensional disturbances growing more rapidly than the corresponding oblique 
waves. 

Mack (1984, 1987) computed the relevant numerical solutions to Rayleigh’s 
equation and Cowley & Hall (1990) worked out the corresponding asymptotic 
solution for the hypersonic limit where the free-stream Mach number M +  co. Their 
results, as well as those of Mack (1984, 1987), suggest that, while the instability 
wavenumber becomes small, the instability wave growth rate becomes even smaller 
as M +  co which means that there will be a well-defined critical layer in this limit 
even for the most rapidly growing mode. Nonlinear effects will then balance the 
resulting singularity a t  sufficiently large Reynolds numbers and the present work is 
concerned with extending the Cowley-Hall (1990) analysis into this nonlinear 
regime. 

Boundary-layer-transition experiments often involve spatially growing instability 
waves generated by relatively two-dimensional, single-frequency excitation devices 
such as vibrating ribbons or acoustic speakers. As the instability wave propagates 
downstream, its amplitude continues to increase until nonlinear effects come into 
play - provided, of course, that the initial amplitude is sufficiently large and/or the 
mean flow divergence is sufficiently small (i.e. the Reynolds number is sufficiently 
large). 

Our previous remarks suggest that the nonlinearity first comes into play locally in 
such experiments, i.e. within a critical layer. The appropriate solution to the 
resulting nonlinear critical-layer problem must then reduce to the linear small 
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FIGURE 1. Asymptotic structure of high-Mach-number solution. 

growth rate hypersonic instability wave solution far upstream in the flow in order to 
represent the natural downstream continuation of this upstream linear solution. The 
unsteady flow outside the critical layer continues to behave linearly (i.e. to be 
representable by a linear instability wave solution) but the corresponding instability 
wave amplitude is completely determined by the nonlinear dynamics within the 
critical layer. These considerations fix the relative scaling between instability wave 
amplitude and Mach number and thereby show that the nonlinearity first becomes 
important when the pressure fluctuation amplitude becomes O( l/M4 l nW)  in the 
main boundary layer. 

The critical-layer nonlinearity is strong in the sense that it enters through a 
coefficient in the lowest-order equation (as in the Goldstein, Durbin & Leib 1987 
incompressible boundary-layer analysis) rather than through an inhomogeneous 
higher-order term (as in the Goldstein & Leib 1989 compressible shear-layer 
analysis). However, it differs from the former analysis (but is similar to the latter) in 
that critical-layer vorticity and energy equations are now strongly coupled. 

But even without this coupling, the present critical-layer vorticity equation would 
still contain additional nonlinear terms that do not appear in any previous analyses 
known to the authors. However, we show that the present result can be transformed 
(along with the energy equation) into the standard (or nearly standard) critical-layer 
vorticity equation form by a simple change in one of its independent variables. This 
transformation shows that the additional nonlinearity can be characterized as an 
unusual type of modulation of the basic critical streamline pattern, which turns out 
to have a strong effect on the nonlinear vorticity roll-up. 

The transformed critical-layer transport equations had to be solved numerically. 
The computations show that, while nonlinear effects always decrease the instability 
wave growth in the Goldstein et al. (1987) analysis, compressibility effects initially 
counteract this tendency to produce a dramatic increase in instability wave growth 
in the present analysis. But this effect is eventually overcome by the usual nonlinear 
vorticity roll-up, and the instability wave growth rate again tends towards zero. 

The overall plan of the paper is as follows. The problem is formulated in $2, where 
we show how the nonlinear flow gradually evolves from the strictly linear hypersonic 
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solution. The flow outside the critical layer is a linear inviscid perturbation about a 
hypersonic (i.e. M B  1) boundary-layer flow, and is found by extending the 
asymptotic analysis of Cowley & Hall (1990) into the nonlinear regime. This flow has 
a triple-layer structure (shown in figure 1) and the solution for the main boundary- 
layer region is worked out in $3. The critical layer is contained in an adjacent outer 
region, which we refer to as the ‘edge layer ’, and in $34 and 5 we obtain the edge-layer 
solution that applies outside the critical layer. This is then used to formulate the 
relevant critical-layer problem in $ 6. The resulting critical-layer vorticity and energy 
equations are then transformed into the usual nonlinear critical-layer equation form 
by a suitable change of independent variable. A novel numerical procedure for 
solving these coupled equations is described in $ 7 .  It is based on the method of 
characteristics and is much more accurate and efficient than the spectral methods 
used in previous studies. Finally, numerical results are discussed in $8. 

2. Formulation 
We use the free-stream flow parameters as reference quantities, which are 

generally denoted by the subscript co, and choose the reference length, say A to be 
some suitable boundary-layer thickness (e.g. momentum thickness). Then the steady 
flow is characterized by the Mach number 

M =  u,/c,, 

where c, = (yBT,)f 

and Reynolds number Re = U ,  Alv , ,  

is the speed of sound in the free stream, v is the kinematic viscosity, y is the isentropic 
exponent of the gas, and 9 is the gas constant. 

We suppose that the flow is two-dimensional and that Re is large enough that the 
unsteady motion is essentially inviscid and unaffected by mean boundary-layer 
growth over the region in which nonlinear interaction takes place. We can then 
suppose that the mean pressure is constant and that the mean flow velocity U(y) 
depends only on the transverse coordinate y to the required order of approximation. 

We shall assume that the variation of viscosity with temperature follows 
Chapman’s approximate law rather than Sutherland’s more exact relation. While we 
realize that these two laws lead to different asymptotic (i.e. high-Mach-number) 
scalings for the linear-instability-wave solution, we choose to  use Chapman’s law for 
the following two reasons : first, the scaled nonlinear solution, which is the primary 
result of this paper, turns out to be completely independent of the choice of viscosity 
law, and secondly, Cowley & Hall (1988, 1990) have already published the linear 
solution for a Chapman’s law fluid and are still working on the Sutherland’s law 
result. It would certainly not be very fair to publish the nonlinear Sutherland’s law 
solution before they can get their linear result into print. 

We further assume that the wall is insulated and, for simplicity, restrict our 
attention to an ideal gas with Prandtl number unity. In  which case the local mean 
density R and mean temperature T will be related by 

RT= 1 ,  (2.4) 
and the mean velocity and temperature will be given by 

u = K ( q )  
and T = l+$(y-l)W(l-U2), 
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respectively, where 7 is the Dorodnitzyn-Howarth variable (Stewartson 1964) 
defined by 

the prime denotes differentiation with respect to 7, and h is the Blasius function, i.e. 
it satisfies 

It follows that (Schlichting 1960, pp. 117, 118) 

h h + 2 h  = O .  (2.8) 

as q+ co, where r" = 7-P,  (2.10) 

/3 x 1.73, and b x 0.462. 
As indicated in $1, we suppose that the unsteady motion starts as a linear inviscid 

instability wave (which is governed by Rayleigh's equation) far upstream in the flow. 
We also suppose that the linear mode is of the acoustic type (Mack 1984, 1987) and 
that 

1 
u = - < l .  

M2 
(2.11) 

The relevant asymptotic solution to Rayleigh's equation was worked to lowest 
approximation by Cowley & Hall (1988). They have shown that the scaled complex 
wavenumber 01 is O(cr), that the phase speed c behaves like 

c = 1 - U F  as u+0,  (2.12) 

where c = O( 1), and that the flow develops a double (actually triple if the free stream 
is included) layered structure, with a relatively thin outer region, or 'edge layer ', 
where 

In F = d(2s-q) (2.13) 

is order unity provided the constant 6 satisfies 

(2.14) 

which can be inverted to obtain 

We could, at this point, eliminate S and carry out the relevant asymptotic expansions 
in terms of explicit gauge functions involving u and appropriate combinations of its 
logarithms. However, it turns out that the resulting formulae will be much simpler 
if we retain both 6 and cr and think of 6 as a function of u (on the same footing as, 
say, ln ( l /a ) )  which is defined implicitly by (2.14). The relevant asymptotic 
expansions will then be double power series in cr and &l, and possibly their 
logarithms. But since O(u) -4 O(S-l), we will often be able to simplify the notation by 
supposing that the various terms involving S-l have been incorporated into the 
coefficients of u, u2, etc. This notational procedure has been used in a number of 
recent papers on critical layers in order to avoid writing down irrelevant logarithmic 
terms that play only a passive role in the analysis. 
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Cowley & Hall (1989) extended their analysis to higher order in IT to  show that the 
instability wave growth rate (or imaginary part of the complex wavenumber) is small 
relative to Rea ,  or more precisely that 

I m a  = ~(g). (2.15) 

The linear instability wave will then have a distinct critical layer, which, in view 
of (2.9), (2.12) and (2.13), must lie in the outer region where = O(1), and 

u= 1 - d  i - - - ( i - i ~ n ~ + ~ i n ~ P ) + o ( ~ ~ )  1 ] - ($9' ~ + . . . . (2.16) [ 262 

The flow should become nonlinear in this layer because the motion is assumed to 
be inviscid and the linear instability wave amplitude increases in the downstream 
direction. The unsteady flow is predominantly linear outside the critical layer and we 
expect the relevant solution to expand like 

u =  U(r)+EU1+€2U2+ . . .  
2, = €'U1+€2tJ2+ ... 

pl'r = l+en,+€'n,+ . . . ,  
0 = T(7) + m1 + e 2 ~ 2  + . . . 

(2.17) 

(2.18) 
(2.19) 

(2.20) 

where {u,v} are the velocity components in the x- and y-directions, 0 is the 
temperature, p is the pressure, and e is a characteristic amplitude of the instability 
wave in the streamwise region where nonlinearity first becomes important. It will 
eventually be chosen so that the lowest-order nonlinear terms are of the same order 
as the linear convection and non-equilibrium terms in the critical-layer vorticity 
equation. This choice corresponds to a 'distinguished ' scaling in which the nonlinear 
terms are as large as they can be without producing a solution that cannot reduce to 
the linear solution far upstream in the flow. 

The ultimate scaling is, in part, determined by the behaviour of the outer linear 
solution a t  the edge of the critical layer. So rather than attempting to give order-of- 
magnitude arguments to relate e and IT a t  this point, we choose to wait until the 
relevant portions of the linear solution are worked out before fixing the €-IT relation. 
There is little possibility that  this temporary two-parameter expansion will promote 
errors in the analysis because the solution is basically linear outside the critical layer, 
and the e-u relation will be fixed before the critical-layer solution is considered. 

Then since {ul ,vl ,~l ,pl}  are determined by linear dynamics, it follows from 
Goldstein (1984) that the expansion coefficients in (2.17)-(2.20) (which depend on x, 
7, t and a) are determined by 

Lnl = 0, (2.21) 

D af ag 2u' ag Ln - _  -+- -__- 
' - D t  ax ay T ax' 

an1 D U '  
-ul+-wl = -g-, 
Dt T ax 

0 (2.22) 

(2.23) 

(2.24) 

(2.25) 
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D an 

Dt aY 

D T  Dn1 -771+-u1 = (y - l )T- - ,  

- ( V ~ + V , T , )  = - a T L - g ,  

Dt T Dt 

(2.26) 

(2.27) 

and a similar equation for 72, where the prime still denotes differentiation with 
respect to 7,  

and 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

It now follows from (2.12), (2.15), and the fact that a = O(cr) that the solution to 
(2.21)? (2.23), (2.25) and (2.27) that reduces to the upstream linear solution must be 
of the form 

(2.33) u1 =-Re Yl(T,xl)At(x,)ei", 

u1 = -dRei@,(q,x,)Atei8, (2.34) 

71 = -ReOlAtei8, (2.35) 

n1 = Ren1Atei", (2.36) 

6 
U 

s 
cT2 

where we have put 
(732 

x1 = -, 
6 

(2.37) 

x = aE[x-(l-m)t], (2.38) 

(dA+/dx,A+), &(a), and ~ ( u )  are real quantities and, to the required level of 
approximation, 17, satisfies Rayleigh's equation 

LZ1n1 = 0, (2.39) 
where 

for n =  1,2 ,  ... (2.40) 
a i a  9 = ((-J-c)2---- 

n -  a7 (u-c)~ a7 

are the linear Rayleigh operators, the complex wavenumber and phase speed a and 
c, respectively, are given by 

(2.41) 
u3 At' 

a = ad+----, 
6 iAt 

u2 At' c =  l-gc---- 
6z iA t '  

(2.42) 
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and the prime now denotes differentiation with respect to xl. We note in passing that 
LZ has an expansion of the form 

E = El + a E 2 +  u2a, + . . . , (2.43) 

where each of the coefficients has its own series expansion in 6 l ,  (In&)-:, etc. (see 
(2.14)) and similarly for c, i.e. 

1 
6 "  

Cc = E(0) +-($I) +. . . , (2.44) 

- 1 
c, =g'+-cp+ .... 

6 
(2.45) 

n, must satisfy the boundary conditions 

-- ""'-0 at T = o ,  (2.46) 

n1+O asq-too (2.47) 

and, in order to be consistent with the linear solution far upstream, we must require 

a7 

that 
A++aexp(Kxl) as x,-+-m, (2.48) 

where K is the scaled growth rate of the upstream linear instability wave and a is a 
complex constant. Finally, the remaining functions of 7 and xl, i.e. Y1, GI, and 0, 
can readily be found from (2.23), (2.25) and (2.27) once 

In  the following two sections we extend the results of this section to derive 
dispersion relations for the external instability wave amplitude. 

is known. 

3. Linear solution in main boundary layer 

that nl should expand like 
First suppose that 7 = O(1).  It is easy to see from the Cowley-Hall (1988) analysis 

1 n, =-(Po+uPl+a2P2+ ...), (3.1) cr 

where each of the expansion coefficients in turn has the expansion 

1 1 
6 6 2  It 

P,=P~'+-P~1)+-P'2 '+. . .  for n =  1,2 ,.... (3.2) 

Substituting these into (2.39) and equating coefficients of like powers of (T and 6, 
we find that 

9 y P 0  = 0,  (3.3) 

and 

where 

(3.5) 
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Q27, q are real, 

and we have put 

d l d  
YiO) 5 (1  - U)Z---- --&?($(y- 1 ) )  (1  - V )  [ i ( y -  1 )  (1  - V)- (U-  1)". 

d7 (U-  1)2 dy 
(3.8) 

Equation (3.3) was solved numerically by Cowley & Hall (1988). They point out that 

Po -e-g as y-f 00, 

where D is an, as yet, undetermined constant. Equations (3.4) and (3.5) can now be 
solved by variation of parameters to obtain 

D 1-2 

(3.9) v3 

( 3 . 1 0 ~ )  

4. Linear solution in the edge layer 
Cowley & Hall (1988) point out that the expansion (3.1) breaks down a t  large 

distances from the wall and then proceed to construct a new 'outer ' solution for the 
region where P = O(1) (see (2.13)). The expansion in this region, which we refer to as 
the 'edge layer' (see figure l),  must be of the form 

n,= 1 +  - Pl+ - P2+ ..., (3 - ($ - 
where again each expansion coefficient has its own series expansion 

1 
s n  (4.2) p = S2p-2' + & - I )  + p  + -p(1) + . . . 

in terms of awl, In 6,  etc. Substituting this, together with the new variable (2.13), into 
(2.39), equating coefficients of ( c / S )  and saving only essential terms, we find upon 

integration that Pi-1) = jp), 

pi") = 8 i 0 ) ( + b 2 p  - 2c1 bF+ In F) + @ O ) ,  (4.3) 

(4.4) 
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where we note that the lowest-order solution (i.e. pl) is given in Cowley & Hall (1988), 
8,, El, 8,, and $* are constants of integration (the latter of which can be different 
depending on whether P 2 E J b )  and 

T,  = l+(y- l )C1 (4.5) 

bY = 4. (4.6) 

is the mean temperature a t  the critical level where - 
This solution does not satisfy appropriate free-stream boundary conditions and it is 
necessary to introduce an outer region where the variable 

T#l= CTy 

is order one (see figure 1). The solution in this region is 

nl = (1 + vB1) exp ( - ~ ( 1 -  m$ i )  + . . , 
to the required order of accuracy and matching with (4.1) shows that 

and 

Finally, matching (3.1) and (4.1) and using (3.9) and (3.11) shows that 

Im#+ = 0, 

and 

2 

&") = e) [l -g(y- 1)2] (In Ibl+$+), 

Z~E1[l-$(y-1)2]Irn@-+2- = G z l 0  qdy. 
A?' A?' * 

A+ 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Having obtained the final solution for ITl, we now proceed to write down the 
formulae €or the other physical quantities. However, we need only determine their 
limiting forms as P+c1/b. Thus, substituting (2.13), (2.34), (2.36), (2.41), (2.42), 
(4.3) and (4.4) into (2.25) and equating coefficients of like powers of u, we find 

(4.16) 

where F can contain higher-order terms in u and the dots indicate that higher-order 
terms in (a-by)  as well as in u have been omitted. Substituting this together with 
(2.33) and the previous equations into (2.23) and using (2.9) 

'l (bT+. . . )+Z{  T - b a  T,  
[-(Ty-l] 

Yl = - T(olCl)2 6 (El-bY) 

+... for P 2 5 .  (4.17) 
b 
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(4.18) 

5. Nonlinear edge-layer terms 
The lowest approximation (in terms of a) of the O ( 2 )  terms in the expansions 

(2.17)-(2.20) has to be determined before the solution within the critical layer can be 
found. However, it is only necessary to consider the edge-layer solution for this 
purpose. It follows from (2.33)-(2.36) that this solution must be of the form 

where the, as yet, unknown coefficients are functions of 7,  xl, and g. Substituting 
(5.1) into (2.22) and using (2.31), (2.28)-(2.36) and (2.40), we find 

where 

and 

(5.5) 

Substituting (2.6)) (2.13), (2.16), (2.40)-(2.43) and (4.1), (4.3) and (4.16)-(4.18) into 
this result we find that 

a F aL7i2)-At2rF( ~ - b Y + L  - $ b F ( y - l ) ( ~ ~ - b Y ) ~ - -  - - 
dY !P F(El - bP)' - 8Y (cl-bF)2 aY T - c G b q  

(5.7) 
to lowest approximation in a when = O(1). It follows that 

It therefore follows from (2.131, (2.16), (2.26), (5.2) and (5.6) that 

and similarly from (2.24), (5.3) and (5.5) that 

(5.9) 

(5.10) 

where J1 is an 0(1) constant. 
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6. The critical layer 
Equation (4.17) shows that the edge-layer solution becomes singular in the critical 

layer where 8 =  b/cl (see figure 1) .  The governing equations therefore have to be 
rescaled to  obtain a bounded result in this region. The thickness of the linear small- 
growth-rate critical layer is of the order of that growth rate divided by the mean 
velocity gradient times the real part of the wavenumber, i.e. 

It therefore follows from (2.10) and (2.13) that  the appropriate transverse coordinate 
in this region is 

Equations (2.16)-( 2.20), (2.33)-( 2.36), (4. I), (4.16), (4.17), (5.1)-(5.3) and 
(5.8)-(5.10) suggest Chat the flow in this region should expand like 

F U2 ac1 €6 Re Ate'" 6262 
U =  l-a(b+ ...)L-- by- - + €al +--a2 + . . . , (6.2) b 6  (2s) +- a T,zlcl a3 

- €6 8 =  T,+-(y-l)bY+--" +..., 
6 a2 

€a 
p l l y  = 1 + Re At eiz + -*1 + . . . , (6.5) 6 

and 

where the passive terms involving In (a/&) have been incorporated into al, etc., and 

m(;). 2 

Then the critical-layer solution will match with the 'outer' edge-layer solution if 
we require that 

as 

and 

1 -i$(y- 1 ) 2  
Aa1 = lim [a1(Y)-a1(-Y)] = - Re (4' -#-) Ateiz + higher harmonics. 

P+m Tc El 

(6-9) 

The expansion coefficients al, vl, TI, etc. are functions of X ,  P and x1 only. They 
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are determined by the inviscid vorticity, energy and continuity equations, which can 
be written as 

and (6.11 a ,  6 )  

(6.12) 

and (6.13) 

is the vorticity. 
The crucial step in the analysis is to choose the relation between the amplitude 

scale E and the wavelength scale u so that the nonlinear terms produce a critical-layer 
velocity jump of the same order as the velocity jump due to linear effects, i.e. O ( E ) .  
A little experimentation shows that nonlinear effects will influence the O(e) term in 
u (through both the streamwise and transverse convection terms in D as well as the 
vorticity source term on the right-hand side of (6.10)) if we take 

u3 
E = s 2 .  

Then a1 and 7, will satisfy 

(6.14) 

(6.15) 

and G(T1 +b(y- 1 )  Y) = 0, (6.16) 

where we have put 

This can be greatly simplified and put into a more standard form by taking x,, X ,  and 

Re At eix 
1 - - r, = - Y + -  

bT, E ,  cl 

- a  - a T , Z ~  

as new independent variables, in which case 9 becomes 

$3 = -+abY >-- (Re Ate'") 2. 
ax1 b axJ 

It now follows from (3.5), (4.13), (4.15) and (6.9) that  

At', 
~ ~ ~ ~ m e - f ~ ~ d ~ ~  - = ____ i 
7t a& c1 8, r 

where we have put - 1 -  - - - - ( 2 ( 2 - ~ ~ ~ q d ~ ) ,  1 r -  qclzl 

(6.18) 

(6.19) 

(6.20) 

(6.21) 
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To reduce the number of parameters and thereby put these results in a more 
universal form, we introduce the new renormalized variables 

b 8  
YE-, r 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

x = x-x,, (6.26) 

and z = r ~ l x l - x o .  (6.27) 

Then H and S2 satisfy the homogeneous boundary conditions 

H , D + O  as Y-++oo, (6.28) 

and (6.15), (6.16), (6.19) and (6.20) become 

9S2= 1 - r + r -  ReiAeiX, ( E!) (6.29) 

9 B  = -ReiAeiX, (6.30) 

and 

where we have put 
a a a 
az ax ay 

$3 G - + Y - -  (Re iA eix) - 

r E (y-1)cl = Tc-1. and 

Since A -+ 0 as Z+ - KJ these equations imply that 

A eix 
H+-Re- 

Y - iK' 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

A eix 
Y-i3 

and S2 + (1 - r )  Re- (6.35) 

when 

where 

A+eEz asZ-+--oo, 

i ? ~  (1-r)n 

(6.36) 

(6.37) 

is the scaled (and normalized) linear growth rate. The solution to these equations can 
therefore be made to satisfy the upstream matching condition (2.48) if we choose the, 
as yet, unspecified real constants X, and x, to be 

X, = -arga, (6.38) 

and (6.39) 
1 r2 

K la1 Tc 
x, = =In---. 
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7. Numerical computations 
The coupled nonlinear evolution equations (6.29)-(6.31) must be solved nu- 

merically. It is easy to see from these equations and the upstream boundary 
condition (6.36) that the solution A will remain real for all values of 3. The problem 
is most easily solved by introducing the Lagrangian coordinates, say X,, Y, via 

where 

Then it is easy to 

and consequently 

and 

- = Y, d x  
dz 

-- - A ( @  sinX, d Y  
dz 

show that 

that (6.29) and (6.30) can be written as 

cw 
- = A ( z )  sinX 
dz 

a(x' "'1 A sin X. 
d z  a(x,>&) 

Comparing (7.5) and (7.2) shows that 

H = Y+F(X,, Y,), (7.7) 

where F depends only on X, and Y,, and it follows from (6.34), (6.36) and (7.3) that 

exp (X,) F = -Yo-A(zo)Re 
Y,-iK ' 

where A(zo)  = exp (Kz,). 

Hence F x - &, and (7.6) can therefore be written as 

Finally, (7.4) shows that (6.3) can be written as 'r ~ ~ Q s i n X d X , d &  = --, dA 
--OD dz 

(7.9) 

(7.10) 

(7.11)  

and it therefore follows from (6.35) that  52 and A can be found by solving (7.1),  (7.2), 
(7.10) and (7.11),  subject to the boundary conditions (7.3), (7.9) and 

exp iX, 52 = (l-r)A(z,)Re----- a t z = z o  asE,+co. 
&-iE 

(7.12) 

The solutions to  (7 .1) ,  (7.2) and (7.10) have the following symmetry 

X(X,, Yo, Z) = -X( -xo, - Yo, Z), (7.13) 

Y(X,, y,, Z) = - Y( -xo, - y,, z), (7.14) 

lR(x,,Y,,z) = -Q(-X, ,  -&,Z). (7.15) 
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Consequently, calculations need to be done only for 0 d Y, < 00. Rather than 
mapping this semi-infinite domain into a finite region, we solved (7.1), (7.2), (7.10) 
and (7.11) over a finite range, say 0 < Y < N ,  and used the asymptotic behaviour of 
the solutions a t  Yo = co to obtain an accurate approximation to the cross-stream 
integral in (7.11). 

By using (7.1), (7.2) and (7.10) to generate asymptotic expansions it is easy to show 
that 

x+X,+(z-zo)Y,+O - , (3 
sinX sinX dA 

Y+Y,---A+--+0 - ,  

cos x sinX dA 
Q+(l-r)-A-( l -r)--+O - , Y, y2, d z  (i) 

Y ,  y2, d z  (A) 

as Y, + 00. It follows that (7.11) can be approximated by 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

The numerical integration of (7.1),  (7.2), (7.10) and (7.19) was started in the 
upstream linear region where (7.3),  (7.9) and (7.12) provide the initial conditions. The 
X,-derivative in (7.10) was discretized using a second-order central difference 
approximation and the trapezoidal rule was used to evaluate the integrals in (7.19). 
The solution was marched forward in z through a predictor-corrector procedure. A 
second-order Adams-Bashforth scheme was used for (7.1), (7.2) and (7.10) and a 
third-order scheme was used for (7.19). The combined corrector steps were then 
iterated until the solution at the next streamwise station had been obtained to within 
a preset tolerance. 

As the calculation progressed into the nonlinear region, solutions to (7.1) and (7.2) 
for fixed values of Y,  tended to roll up into very tight spirals resulting in a loss in grid 
resolution. Two steps were taken to control this loss; first, since the roll-up was most 
pronounced for small values of Y,, the computational domain was decomposed into 
three subgrids of varying X, resolutions so as to provide points where they were 
needed most; and second, while the integration of (7.1)) (7.2),  (7.10) and (7.19) was 
being performed, mesh points along lines of constant y0 were redistributed by use of 
a cubic spline approximation whenever the spacing between adjacent points in the 
( X ,  Y)-plane exceeded a preset tolerance. 

8. Numerical results and discussion 
Goldstein et al. (1987) considered the nonlinear evolution of a two-dimensional 

instability wave in a weak adverse pressure gradient boundary layer. Equation (6.29) 
reduces to their result in the limit where r+O and (6.29) and (6.30) become 
decoupled. They found that nonlinear effects always reduce the growth rate of the 
linear instability wave, driving it towards an equilibrium state. However, they were 
unable to carry their computations far enough to determine if an actual equilibrium 
state was achieved. 

The scaled instability wave amplitude (as calculated from the present solution) is 
plotted as a function of the scaled and normalized streamwise coordinate for 
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various values of r in figure 2. The corresponding instability wave growth rates, 
A J A ,  are shown in figure 3. As in Goldstein et al. (1987), the growth rates initially 
follow the linear growth until the amplitude becomes large enough for nonlinear 
effects to come into play, but now the nonlinear effects cause the growth rate to 
increase - presumably because compressibility effects, i.e. the Bjerknes forces, act as 
a vorticity source within the critical layer. Notice that the growth augmentation 
increases with increasing r - becoming very large as r + 1. This is because the 
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vorticity fluctuations become small compared to the temperature fluctuations as 
r -+ 1 so that the compressible effects provide the first source of nonlinearity as 
the instability wave increases (as in Goldstein & Leib 1989). It is worth noting that 
t'he unnormalized linear growth rate K determined by (4.15) is a maximum a t  
r x 0.85. 

However, transverse convection effects eventually become dominant when the 
continuously increasing amplitude becomes sufficiently large (as in Goldstein et al. 
1987). The resulting nonlinear vorticity roll-up eventually reverses this initial 
augmentation in growth rate and eventually causes it to oscillate about zero. 
However, as noted in Goldstein et al. (1987) it is still unclear whether or not the 
growth rate actually goes to zero. This issue is, on the other hand, somewhat 
academic since, as can be seen from figure 4, the critical-layer vorticity roll-up 
generates progressively smaller lengthscales with increasing downstream distance, as 
was first noted by Stewartson (1978) for Rossby-wave critical layers. Viscous effects 
must then come into play and eventually determine the ultimate asymptotic state of 
the critical layer - as in the incompressible free-shear-flow analysis of Goldstein & 
Hultgren (1988). We expect the viscous effects to behave similarly in the present 
solution, but with vorticity/temperature coupling now playing a role in the ultimate 
quasi-equilibrium asymptotic solution. However, this needs to be worked out in more 
detail, and will be done in a forthcoming paper. 

It is worth noting that the enhanced growth rates do not lead to a finite 3 
singularly similar to the one found by Goldstein & Leib (1989) for a weakly nonlinear 
compressible critical layer involving temperature/vorticity coupling analogous to 
that of the present solution. The vorticity roll-up of the present fully nonlinear 
solution is apparently strong enough to reverse the growth augmentation before the 
singularity has had a chance to form. In  fact, like the initial growth rate 
augmentation, the final growth rate reduction appears to increase with increasing r .  
It is also worth noting that the growth rate oscillations become considerably more 
pronounced as r approaches unity. 

The improved numerical method described in $ 7  allowed us to carry the 
computations much further downstream (relatively speaking) than was heretofore 
possible with the previous spectral methods. The final vorticity contours of figure 4 
are, therefore, much more tightly wound than the corresponding results given in 
Goldstein et al. (1987) and Goldstein & Leib (1988), but the general patterns are not 
all that different - the primary difference being in the contour shape between vortex 
cores. 

However, it is important to point out that (in order to reduce the number of 
parameters and thereby obtain a more universal result) we plotted the present results 
against the transformed variable Y ,  which is related to the more physical scaled and 
shifted variable - Yb/r through (6.18) and (6.25). We therefore include figure 5, in 
which we replot the vorticity contours of figure 4 against the more physical 
coordinates X and - Tb/r for 

which is reasonably close to the value for the first acoustic mode with r = 0.7. 
The resulting vorticity contours are now quite different from the previous results. 

Figure 5 reflects the fact that there is a superposed straining of the vorticity contours 
by the external instability wave velocity field (see (6.18)) which does not appear in 
any previous nonlinear critical-layer analysis of which we are aware. This is because 
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the critical-layer nonlinearity is now much stronger than it was in any of these 
previous analyses. It is rather remarkable that this additional nonlinearity manifests 
itself as a simple straining of the more usual vorticity pattern (which is characterized 
by the simple formula (6.18)) and that this straining can have a more significant effect 
on the vorticity roll-up than the temperature/vorticity coupling produced by the 
Bjerknes force. 

For the sake of comparison, we include figure 6 which shows the downstream 
evolution of the vorticity contours as calculated from the linear solution (6.34)-(6.37). 
As in the Goldstein & Leib (1988) incompressible solution the initial shearing of the 
constant vorticity lines is again well described by linear theory but the subsequent 
roll-up is not. 

Finally the roll-up of the constant temperature lines is shown in figure 7 for 
T = 0.7. Notice that there is an even closer resemblance between these contours and 
the vorticity contours of Goldstein et al. (1987) than there is between the Goldstein 
et al. (1987) contours and those shown in figure 4. This is because, unlike those of 
Goldstein et al. (1987), the present vorticity contours no longer correspond to 
material lines (due to the Bjerknes force) while the temperature contours still retain 
this property. 

The authors would like to thank Dr Stephen Cowley of Imperial College for helpful 
criticisms made in his role as a referee on the paper and for making his linear 
Sutherland’s law solution available to us so that we could establish the viscosity law 
independence of the present nonlinear solution with a minimum of effort. 
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